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Magnetic moments of baryons in a quark model 
K. R. JAMES 
Department of Theoretical Physics, University of Manchester 
Communicated by S. F. Edzcards; MS. received 29th April 1968 

Abstract. Magnetic moments of octet baryons are calculated in a non-relativistic 
quark model with scalar binding, using a model for SU(3) breaking developed earlier, 
Violation of ordinary spin symmetry is also considered, leading to a mixture of spin- 
orbital states. Consistency relations are derivable. In a special case, restricted to 
the 56, the results are given explicitly. 

1. Introduction 
A single-particle model has been discussed elsewhere (James 1968, to be referred to 

as I), in which the quarks are bound by a scalar potential - U ,  regarded for simplicity as 
a very deep square well. The  change in energy for a X quark 

6M p2 
6E = (M-U)-+--(6M)2+ 

E, 2EO3 

depends not only on the change in mass but also on the potential. This can produce a 
A-X splitting in the baryon octet, because the effective potential seen by the X quark is 
different in the two cases. The  SU(6) mass formula can be reproduced, and mass relations 
can be found for resonances of higher spin which agree with available data. 

In  this model the potentials need violate only the ordinary spin part of SU(6); it is 
no longer necessary to include large SU(3)-breaking interactions. The  masses of the 
baryon octet can be expressed in terms of two parameters, E,  and E,, together with energy 
increments 6, and a,, referring to the spin triplet and singlet states respectively. These 
parameters can be estimated as 

E,  = 412MeV, 
6, = 135Mev, 

E2 = 2 1 6 ~ e v  
6, = 2 8 0 ~ e v .  

It is well known that the magnetic moments of quarks may be enhanced by strong 
binding in a scalar field (Bogolubov, Struminski and Tavkhelidze 1965, unpublished, 
Lipkin and Tavkhelidze 1965). If the effective potential is assumed to be entirely scalar 
(Tavkhelidze 1965), the magnetic moments of nucleons calculated in a non-relativistic 
model agree closely with experiment. From our values ( l ) ,  following the procedure of 
Morpurgo (1965), we readily find 

p(P) = 2*86n.m., p(N) = -2.02 n.m. 

It is suggested in I that the potential may contain a small vector component, which cannot 
be neglected in calculating the moments. We should also consider the possibility of spin- 
orbital states other than the 2S state. 

The  observed enhancement of the g factor may, of course, be due to a charged meson 
cloud surrounding the quark (cf., for example, Morpurgo 1966). In  the present paper, 
however, we consider only the simplest possibility, treating the quarks as independent 
Dirac particles with g factors enhanced by scalar binding. We include SU(3) violation and 
also violation of ordinary spin symmetry, giving rise to a mixture of spin-orbital states. 
This simple model is amenable to calculation; for the baryon octet, it leads to consistency 
relations which should provide a test for the model. 
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2. Single-particle model 
Our assumptions will be as follows: 
(i) 

enhancement caused by scalar binding. 
(ii) 
(iii) 

(iv) 
We may then obtain magnetic moments for the quarks, assuming that SU(3) breaking 

is caused only by the A-quark mass increment (see discussion in I). The  magnetic 
moments are 

where 

The  quarks within a hadron behave as free Dirac particles, except for g-factor 

The  contribution of exchange currents and meson clouds can be neglected. 
The  spin-orbital states are described by the non-relativistic SU(6) classification 

The  relativistic correction to the magnetic moments can be neglected. 
(cf. Dalitz 1965, Dalitz 1966, unpublished). 

pi = gdLi + 2si) 

e - e  - e  
3 E ’  66 g, = -, g A  = 6c.+s, (2) g = -  P 

(75 = c = 1). 
The  parameter E is related to the energy of the quark but is not the same unless the 

vector potential vanishes. It is shown in I that the appropriate combinations for the 
baryon octet are 

p, n: &eb 

p, n: $6, 

1 A: a(€,. + 8,) 

E (A: h ( E b f 6 b )  

where 
E ,  = E1+3€2, 
6, 81 + 382, 6, = 581+382. 

Eb = 5 E 1  + 3 E 2  

The values of 6, and 8, (energy increments attached solely to the A quark) are given in 
equations (1). 

3. Structure of the baryon octet 
The structure of three-body nuclei and the magnetic moments of the charge doublet 

states 3H and have been discussed extensively (Sachs and Schwinger 1946, Sachs 1947, 
Rosenfeld 1948, Sachs 1953, Derrick and Blatt 1958). With respect to permutations, the 
spatial function may be symmetrical (S), antisymmetrical (A) or of mixed symmetry 
(M+, M-). The  last functions satisfy permutational symmetry in two coordinates: 

P23X= X (M+) 
PZSX = - X  (M-). 

For the spatial dependence we have a complete set of orthogonal functions (Xs? X,, 2, X ) ,  
belonging to these symmetry classes. Unless we make the strong assumption of para- 
statistics (Greenberg 1964), we must, of course, assign the baryon 56 to an antisymmetric 
spatial state, which is expected to be mainly an S state. 
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The spin functions can be classified in a similar way (see, for example, Sachs 1 9 5 3 ) :  
S = "  

s = 8. 

4 s  = c11c12p3 + K 1 p 2 K 3  +PlazK3 

$ =  -2( t l l p 2 K 3  - + K l @ 3 ) ,  s = 2 (4) 
4 = K 1 ( K 2 p 3  -c13p2))  

2 

The unitary spin functions for the baryon octet belong to the mixed symmetry representa- 
tion and will be denoted by and r j  : 

7 = - 2(nln2p3 - 2$1n2n3 + n1p2n3) 

7 = n1(n2p3 - n3P2) 

7? = 6(h3@1n2 -p2n1)  - h2@3nl -pln3)) 

7 = h3@1n2 -pZnl) + h2@3nl -pln3) - 2X1(p2n3 -p3n2) 

7 = -2{h& 1122 +pZnl) f h 2 ( p 3 n 1  +pln3) -2X1(p2n3 +?3n2)) 

7 = h3(p1n2 +p2n1)  -h2(p3n1 +pln3) 

7 = - 2(hlh2$3 - 2p1x2x3 f x1P2x3) 

x (  

4 
( 

( 5 )  

3 0  
= - h 3 p 2 ) *  

The  normalization is fixed by the relations (cf. Sachs 1953)  

Pl27 = PI37 = 4, 
p - - p  - -  

127 - 137 - 37-67* 
T o  construct wave functions for the octet, we therefore have the following sets: 

Xs,  Xa, x) X 
4 s )  $ 7  4 ( 6 )  

- 
7 ,  7 7 .  

We also require that the total angular momentum add up to J =  8. For L = 0 we are 
restricted to S = 4, i.e. the spin functions $ and 4. For L = 2 we can have only S = #, 
i.e. the function bS, while for L = 1 there is no restriction. 

By combining functions from the three symmetry classes, we may construct further 
functions with definite symmetry (Sachs 1953). Considering the two sets (Fs, Fa, F, F )  
and (G,, G,, e, G),  we can form the symmetrical products 

F,G,, F,G,, 12FG+F€. 

The antisymmetrical products are 

F,G,, F,G,, FG-EG. 
Finally, the products of intermediate symmetry are 

FC + FG, 12FG - 25% 
as can be seen by applying P12 and P I 3  to the factors. 

functions : 
From expressions ( 6 )  we can therefore construct the following antisymmetrized wave 

Xa(12h + $7): 2 S ( 5 6 ) ,  2P(56)  

Xd47 - $9): 2S(20), 2P(20) 

X( 1247 - $q) - 2(+j + $7)): 2S(70), 2P(70) 

(X7 --ma: 4P(70), 4D(70). 
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The SU(6) classification is indicated according to spin/unitary spin symmetry : 

S(56), A(20), M(70). 

We may choose particle 1 uniquely according to the scheme 

?(x) = P l n 2 % 3 ,  = X 1 ( p 2 n 3  +p3%!2), ?(eo) = P l A d 3 ,  q(A) = X1(p2,n3 - p 3 % 2 )  

with corresponding choices for the other charge states. From equations (5) it is seen that 
the unitary spin function q vanishes for all states except the A hyperon; in this case 7 
vanishes instead. The  spin-orbital functions then reduce to those of table 1. The wave 

Table 1. Spin-orbital functions for the baryon octet 

%, zP(56) 2s, ZP(20) 3, zP(70) 4p, 4 ~ ( 7 0 )  

N, C, 9 Xa$ XS4 X$ +& 54. 
A Xa4 Xs$ 12x4  - 24 X4S 

function of the baryon octet will be a linear combination of these functions, the actual 
mixture depending on the type of non-central force (Rosenfeld 1948). We take the 
combination 

8 + = C ail/* $i 
i = l  

as set out in table 2. 

Table 2. Matrix elements for N, 2 and 

State 3(56) 2S(20) %(70) zP(56) 2P(20) 'P(70) 4P(70) 4D(70) 
Weight al a2 a3 a4 a6 a5 a7 a8 

<LIS > 
<Slt > 
G Z " )  

<SZ" > 
In  the case of 

2 2 2 1 - 1 
Y Y 9 3 

1 
9 9 Y 3 

.- _-  - - 

1 1 1 1 1 5 
2 18 18 1 8  

1 1 5 

_-- _ -  - --- 
0 

- _ -  - E  _-- 
0 0 

0 0 
0 

- _ _  
- - - 

_-_ -- _ .-. 
6 0 1 8  1 8  

_-  
; 

_ -  
- - 

the values for the 20 and 56 representations should be interchanged. 

A complication arises for the A hyperon, as can be seen by inspection of table 1 ; the 
functions for the A have a special form, differing from the other members of the octet. 
For the 2(8) reduction of the 70, in particular, they have an apparently different weighting 
with respect to x, X and 8, 4. We must therefore decide on the relative weight of these 
functions. By analogy with the mixed symmetry functions (4), this is given by 

I t  can then be seen that, for the states 2S(70) and 2P(70), matrix elements of orbital and 
spin operators are to be averaged equally over both types of mixed symmetry function. 

4. Magnetic moments of the baryon octet 
We wish to evaluate matrix elements for the states of table 2, in analogy with the 

procedure for nuclei (Sachs and Schwinger 1946, Sachs 1947). The diagonal elements of 
the spin operators, (SI") and (S2" )  = (S,"), may be evaluated explicitly from equa- 
tions (4). For the orbital angular momentum, however, further results are needed. 
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The position vectors (U, p), with 
1 

r = - ( r , + r  3 - 2 r l )  
d6 

d2 

1 
P = - (r2 - r3) 

form the basis for an M representation of this permutation group. The  functions ;k and X 
are then either symmetrical or antisymmetrical under interchange of r and p. It was ob- 
served by Sachs and Schwinger that use can be made of this property, since the orbital 

2 8  L 1 " = -  x--y- 
3i i ay 8 3  

where 
r = ( X , Y ,  x), p = (U, z', w). 

The two terms in equation (7) clearly have the same diagonal matrix element for a state 
with definite symmetry under interchange of Y and p. Combining these two equations, 
we obtain 

(L,")  = + ( L " ) .  
This result is obtained more simply for the other spatial functions, which are either 

symmetrical or antisymmetrical in all three coordinates. It follows that 

(L ," )  = (L,") = (L3" ) .  
The  total orbital angular momentum may be evaluated from the usual vector addition 
formula (see, for example, Preston 1962): 

( L " )  = ( J " )  {J(J+ 1) + L(L + 1) - S(S+ 1)). 
2J(J+ 1) 

Thus we can evaluate the diagonal elements of interest: the results are given in table 2. 
For the baryons K, C and E, we obtain 

F1 = (L,"+2S1") 
= i( - 3a1 + 9a2 + 3a3 + 3a4 - a5 + a6 + 4a,) 

F2 = (L2"+2S2")  = (L,"+2S3") 
= Q(6a1 + 3a3 + 2a5 + a6 + 4a7). 

(8) 

For the A hyperon 
G, = (L,"+2S1") 

= +(9a, - 3a, + 3a3 - a4 + 3a6 + a6 +4a,) 

= Q(6a2 + 3a3 + 2a4 + a6 + 4a,). 

( 9 )  G2 = (L2"+2S2")  = (L3"+2S3") 

These results give only the diagonal elements. We must also consider cross terms of the 
form 

and 

where i # j .  Without a detailed knowledge of the spatial functions we cannot evaluate 
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these elernents (see discussion by Sachs (1947) for the case of 3H). We can take them 
into account, however, at the expense of introducing an extra parameter. In  each case the 
matrix element of La vanishes : 

( i ~ L 1 z + L 2 z + L 3 z j j )  = 0 

since t)$ and t ) ~ ~  are orthogonal eigenfunctions of this operator. The same applies to total 
spin : 

( i l S 1 a + S 2 2 + S 3 z ~ j )  = 0. 

We therefore introduce a parameter 

K = 2 ( ~ ~ ~ ~ ” + 2 S , z ) + ( ~ ~ z + z S ~ ” ) ~ j )  
i i j  

= - 2 (ilL,”+ZS,”lj) (10) 
i i j  

in terms of which the non-diagonal elements can be expressed. Because of the special 
form of its wave function, the A hyperon has in general a different parameter, which we 
call p. 

From equations (Z), (3), (S), (9) and (10) we can now calculate the magnetic moments 
of the baryon octet: 

where 
a = F 1 - x ,  b = 2F2+z 

E,  = E1+3€2, E~ = 5c1 -k 3 ~ ~ .  

In  these units e takes the yalue 2 x 939 MeV (nuclear magneton). 

5. Discussion and conclusion 
Excluding the equation for p(A), we have a set of seven equations in four independent 

variables, which can be solved when the data are available. The  parameters cl, c2 and x 
can then be found, leaving one equation for the mixing parameters a,  (table 2). Together 
with the normalization condition, this allows us to consider a mixture of two spin-orbital 
states. If K is found to be negligible, we can also put /3 = 0 in the equation for p ( A )  and 
obtain a check on the various mixtures. Until the data are known, however, this cannot 
be taken any further. Three consistency relations are derivable: 

c L ( x + ) - P ( E o )  = P ( x 0 ) - P ( X - )  

= P(P) + 3 A V  
p ( P ) - p ( Z - )  = p(P)+Zp(N). 

On SU(3) symmetry there are, of course, six consistency relations (see, for example, 
Mayer 1963). In  the present model only three of these would be satisfied accurately (to 
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within a few per cent). This provides us with a test for our assumptions on SU(3) violation 
and the electromagnetic properties of quarks. 

A case of special interest is obtained by restricting the wave function to the 56, i.e. to 
the second and fifth columns of table 2. If spin-orbit forces predominate, this may be a 
reasonable description. From equations (11) we can then obtain u4, together with five 
consistency relations: the results are given in the appendix. For a first approximation, 
we further assume zero mixing and put a, = 1. We can then solve for el and eZ, using the 
nucleon magnetic moments, and obtain the six remaining moments as predictions : 

E ]  = 380 MeV, c2 = 280MeV 

p ( X + )  = 2.64n.m., p ( X o )  = 0*80n.m. ,  p ( X - )  = -1.03 n.m. 

(2.79 n.m.) (0.96 n.m.) ( -  0.88 n.m.) 

p ( h )  = -0 .60n.m. ,  p(Eo) = - 1.47n.m., p(E-) = -0 .44n.m 

( -  0.96 n.m.) ( -  1.91 n.m.) (-0.88 n.m.) ,  

The  values found on SU(3) symmetry are given for comparison. Estimates have been 
obtained previously (B&g and Pais 1965) by correction for the true baryonic mass according 
to 

I m (nucleon) 
I” = I“ m (hyperon)‘ 

Most of our estimates are significantly different from these; in particular, attention is 
drawn to p(Xi-) and I”(=-). 

With the same assumptions, magnetic moments are readily calculated for vector mesons 
and decuplet baryons (K. R. James 1967, unpublished). As might be expected, non-zero 
moments are found for neutral particles of non-zero strangeness. In  the approximation 
that these particles belong purely to S states, with yanishing vector potentials, we find 

p(E*O) = Zp(Y,*O) = O.2n.m. 

p(R*O) = -p(K*O) = 0.1 n.m. 

The  present model allows us to calculate the magnetic moments of hadrons, including 
ordinary spin and SU(3) violation, according to simple and well-known methods. The  
model is based on strong assumptions, but consistency relations provide a test for its 
usefulness and distinguish it from other possible models. The  situation is more favourable 
than for three-body nuclei, because more data are potentially available. If the method is 
valid, it may therefore lead to information on the spin-orbital structure of baryons. In  a 
special case, restricted to the 56, the results have been found explicitly. 
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Appendix 
If the wave function is restricted to the 56, the cross terms o! and ,B vanish (Sachs 1947), 

and we are left with three parameters: E,,  c2 and a4. Taking the independent moments to 
be p(P), p(N) and p ( R ) ,  and neglecting a42, we obtain the following predictions from 
equations (1 1) : 

p(Xi) = A+2.45, p(Co) = A+O*61, I”(C-)  = A-1.22 

I”,(=’) = -B-0.69, p ( E - )  = -B+0*34 
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where 

K.  R. .James 

0 *345~, 1 -22 E b  

E ,  + 980’ Eb+ 1520 
A=--.-- B =  

E,  = 1220( 1 - Za,), eb = 2730(1 -a4)  

p ( A )  + 0.60 
p ( A )  + 0.88‘ 

a4 = 0.47 

If the amplitude is to be real, the last relation implies ip(A)l < 0.60 n.m. This is within 
the present experimental limits (Hill et al. 1965, A. H. Rosenfeld et al. 1967, unpublished). 
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